Interaction of RT_3 (R = Ce, Y; T = Ni, Co) intermetallic compounds with alkaline solutions of MBH_4 (M = Na, K, Rb, and Cs)

I. I. Koroboy* and N. G. Mozgina

Institute of New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: 007 (095) 742 0004. E-mail: dia@incp.ac.ru

The interaction of RT₃ (R = Ce, Y; T = Ni, Co) intermetallic compounds (IMC) with alkaline solutions of MBH₄ (M = Na, K, Rb, and Cs) was studied in the temperature range of 298–318 K. For all intermetallic compounds, the reaction of catalytic hydrolysis of NaBH₄ is zero order with respect to MBH₄ and first order with respect to RT₃. The reaction rate decreases and the activation energy of the catalytic hydrolysis of MBH₄ increases in the following order: NaBH₄, KBH₄, RbBH₄, and CsBH₄. The hydride phases RT₃H_x (x = 2.3–3.9) were synthesized by the interaction of RT₃ IMC with alkaline solutions of MBH₄. They are similar in composition to the products formed in the reaction of RT₃ with gaseous hydrogen at high pressure. The rate of hydrogenation of RT₃ in alkaline solutions of MBH₄ decreases on going from sodium to cesium.

Key words: alkali metal borohydrides, catalytic hydrolysis, reaction order; intermetallic compounds, hydride phases.

Reactions of hydride-forming intermetallic compounds (IMC) with alkaline solutions of alkali metal borohydrides are of interest both as a fundamentally new route to the synthesis of hydride phases of IMC and as a new catalytic process of hydrogen generation.

In a study of the interaction of LaNi₅ type IMC with alkaline solutions of MBH₄ (M = Na, K, Rb, and Cs), we established ¹⁻³ the dependences of the reaction rate on the nature of M in MBH₄ and on the concentration of a solution of MOH, which were previously unknown for the homogeneous and catalytic (occurring in the presence of individual metals such as Ni and Co)^{4,5} hydrolyses of MBH₄.

The reactions of RT₃ IMC with gaseous hydrogen have been studied in detail.⁶⁻⁸ Therefore, it is possible to compare the chemical composition of the hydride phases formed in the interaction of IMC with hydrogen under pressure and in solutions of alkali metal borohydrides.

The present work is aimed at elucidation of general regularities of the chemical processes that occur in the interaction of hydrogen-sorbing IMC with inorganic hydrides. RT_3 type (R = Ce, Y; T = Ni, Co) IMC, which differ from $LaNi_5$ compounds by their higher content of the rare-earth element and by the fact that they contain alkali metal borohydrides with different size cations (from Na^+ to Cs^+), were chosen as the subjects of the study. The kinetics of the catalytic hydrolysis of borohydrides MBH₄ (M = Na, K, Rb, and Cs) in the presence of the IMC indicated was studied, and the conditions and composition of the products of

the hydrogenation of RT₃ in alkali solutions of MBH₄ were determined.

Experimental

Metals of the following purity were used for obtaining RT_3 IMC (R = Ce, Y; T = Ni, Co): Ce, 99.6%; Y, 99.6%; Ni, 99.99%; and Co, 99.95%. The blend was melted in an electric-arc furnace under an argon pressure of 0.2 MPa. The melts were annealed at 873 K for 250 h and then hardened. The phase composition of the melts was monitored by X-ray diffraction using a DRON UM-1 diffractometer. Prior to analysis, assay buttons of the melts were dispersed in a ball mill filled with argon.

Sodium borohydride was purified by double recrystallization of the technical product from a 1 M solution of NaOH. The NaBH₄ obtained contained 98.5% of the main substance. Potassium borohydride was synthesized by the exchange reaction of NaBH₄ with KOH in water according to a known procedure. The KBH₄ formed contained 98.8% of the main substance. Rubidium and cesium borohydrides were obtained by the exchange reaction of NaBH₄ with the hydroxide of the corresponding metal in an aqueous-alcoholic solution according to a procedure described previously. RbBH₄ and CsBH₄ contained 99% of the main substance.

The behavior of RT₃ in alkaline (1.0 and 4.0 mol L^{-1} MOH) solutions of MBH₄ at 298, 308, and 318 K was studied by the tensieudiometric method using a previously described setup with a calibrated volume. This setup made it possible to monitor the amount of the gas yielded in hydrolysis and the amount of hydrogen absorbed by IMC. In some cases, the method of vacuum extraction of hydrogen was used along with tensieudiometric measurements for the determination of hydrogen in the hydride phases obtained by the reactions of RT₃

with alkaline solutions of MBH₄. The accuracy of determination of the hydrogen content in samples was ± 0.1 atom H₂ per mole RT₃ (H/RT₃).

The specific catalytic activity of IMC in the hydrolysis of alkaline solutions of MBH₄ was calculated as the ratio of the rate constant of the hydrolysis of MBH₄ $(k/\text{mol min}^{-1})$ to the weight of IMC (m/g).

Results and Discussion

The study of the interaction of RT₃ with alkaline solutions of MBH₄ revealed several general regularities in the catalytic hydrolysis of alkali metal borohydrides in the presence of LaNi₅ (see Refs. 1-3) and RT₃ type IMC. As in the case of LaNis compounds, the rate of the hydrolysis of MBH₄ in the presence of RT₃ becomes maximum and constant after performing five to ten experiments with the same IMC sample. The study of the dependences of the reaction rate of the catalytic hydrolysis of MBH₄ on the initial concentration of MBH_4 (0.05-0.30 mol L⁻¹), the weight of RT_3 (0.1-1.0 g), the temperature of the process, and the concentration of alkali in a solution for all RT3 IMC studied and alkali metal borohydrides showed that the reaction is first order with respect to RT3 IMC and zero order with respect to MBH₄, which is similar to the hydrolysis of MBH₄ in the presence of LaNi₅ type IMC.

Analyzing the results of the determination of the catalytic activity of RT₃ in the hydrolysis of alkaline solutions of MBH₄ (Table 1), we can observe a considerable decrease in the hydrolysis rate on going from NaBH₄ to CsBH₄ for all intermetallides studied.

This unexpected fact was first observed experimentally³ for the hydrolysis of MBH₄ in the presence of LaNi₅ type IMC. To explain this phenomenon, it was proposed that the size of the alkali cation affects the rate of the catalytic hydrolysis of MBH₄. It is known that the chemical activity of alkali metal borohydrides increases as the polarizing effect of the alkali cation on the borohydride ion increases. This results in a distortion of its symmetry and redistribution of the electron density on the H atoms. In the series of cations Na⁺, K⁺, Rb⁺, and Cs⁺, with radii of 0.98, 1.33, 1.49, and 1.69 Å, respectively, Na⁺ (with the smallest radius) has the

Table 1. Specific catalytic activity (k/m) of RT₃ IMC in the hydrolysis of MBH₄ in 1 M and 4 M solutions of MOH (298 K)

RT ₃	NaBH ₄	<i>k/m</i> · 10 ⁵ /mo KBH₄	RbBH ₄	CsBH ₄
	1 M 4 M	1 M 4 M	1 M 4 M	1 M 4 M
CeNi ₃	5.25 7.88	4.65 6.40	3.52 3.68	0.72 0.08
CeCo ₃	1.65 2.10	1.42 1.85	1.11 1.00	0.26 0.04
YNi ₃	3.50 4.72	3.00 3.75	2.42 2.58	0.55 0.06
YCo ₃	1.00 1.30	0.78 1.10	0.62 0.62	0.18 0.02

strongest polarizing effect on BH₄. This explains the fact that NaBH4 had the highest chemical activity in the studied series of borohydrides. It has been previously shown¹² that in an aqueous medium the difference between the electronegativities of metals decreases sharply as the ionicity of the bonds in the molecules increases, which cancels out the polarizing effect of the cations. This assertion has been used 13 to explain why the experimental rates of the homogeneous hydrolysis of borohydrides of different alkali metals are almost the same. The results of our study suggest that the polarizing effect of alkali cations on the BH₄ anion takes place in the interaction of MBH4 with the surface of the IMC particles in the heterogeneous hydrolysis of MBH4 in the presence of RT3 as well as in the presence of the LaNi5 type IMC studied previously.5

The values of the apparent activation energies of the catalytic hydrolysis of MBH₄ in the presence of RT₃ IMC were calculated from the temperature dependences of the reaction rates. These values range from 53—60 kJ mol⁻¹ (for NaBH₄) to 65—70 kJ mol⁻¹ (for CsBH₄) and almost coincide (within the experimental error) with the apparent activation energies of the catalytic hydrolysis of MBH₄ in the presence of the LaNi₅ type IMC determined by us. This result agrees with the assumption that the considerable decrease in the reaction rate of the hydrolysis of MBH₄ in the presence of IMC is independent of the composition of the latter and is related primarily to the nature of M in MBH₄.

The results presented in Table 1 show that the ratios between the catalytic activities of RT₁ IMC in the reaction of the same alkali metal borohydride are retained for all MBH4 studied; in addition, some correlations between the chemical composition of RT₁ IMC and their catalytic activity can be revealed. For the same R, the catalytic activity of RT₃ containing Ni as the transition metal is higher than that of Co-based IMC. IMC with R = Ce have higher catalytic activity than IMC containing Y with the same T. Based on the suggested model of the formation of catalytic layers on the surface of LaNis type IMC (related to the subsequent formation of the oxide and hydroxide forms of the rare-earth metal and highly catalytically active Ni crystallites due to the irreversible chemical interaction of IMC with an alkaline solution of NaBH₄), the fact that the activity of the RCo₃ catalysts is lower than that of RNi₃ catalysts can be explained by the existence of Co crystallites, which have lower catalytic activity than Ni crystallites, in the surface layers. This was experimentally proved in the study of the hydrolysis of NaBH₄ using the individual Ni and Co catalysts. 4,5 The fact that the catalytic activity of CeT₃ is higher than that of YT₃ can be associated with the fact that Ce is less stable to oxidation than Y. Therefore, in the interaction of RT3 IMC with alkali solutions of MBH₄, the surface layers of the CeT₃ particles have more Ni or Co crystallites, which determine their catalytic activity, to a greater extent than the layers of YT₃ particles.

In the case of NaBH₄ and KBH₄, for all RT₁ IMC increasing the concentration of alkali in a solution from 1.0 to 4.0 mol L⁻¹ results in an increase in the hydrolysis rate; for RbBH₄, the rate remains almost unchanged, and only for CsBH₄ is the reaction substantially retarded. A qualitatively similar effect of the alkalinity of the solution was observed by us³ for the hydrolysis of MBH₄ in the presence of the LaNi₅ type IMC. An increase in the concentration of alkali in the catalytic hydrolysis of MBH₄ in the presence of IMC can favor, on the one hand, an increase in the catalytic activity of IMC due to its further segregation in more concentrated alkaline solutions and, on the other hand, an increase in the stability of the borohydride solutions. Probably, the first factor predominates for NaBH₄ and KBH₄, while CsBH₄, which is more stable with respect to catalytic hydrolysis, becomes more stable as the concentration of CsOH increases.

The tensieudiometric study of the interaction of the RT₃ compounds with alkaline solutions of MBH₄ showed that along with the process of catalytic hydrolysis, the formation of hydride phases of RT₁ IMC occurs and the absorption of hydrogen continues until the maximum composition of the RT₃H_x phases, which exist at pressures not greater than 0.1 MPa, is observed in the first cycle. When the next portions of MBH4 are added to the solution with the hydride phase, they undergo complete hydrolysis without the subsequent absorption of hydrogen. The composition of the hydride phases, CeNi₃H_{2.8}, CeCo₃H_{3.5}, YNi₃H_{2.3}, and YCo₃H_{3.9}, obtained by the interaction of RT₃ IMC with alkaline solutions of MBH₄ (M = Na, K, Rb, and Cs) is almost the same for all MBH₄ within the experimental error of the method used for determining the hydrogen content, but the rate of the hydrogenation of RT₃ depends directly on the reaction rate of the catalytic hydrolysis of MBH₄ and decreases on going from NaBH₄ to CsBH₄. A similar interrelation between the rates of the hydrogenation of IMC and the catalytic hydrolysis of MBH₄ was observed for the interaction of LaNis type IMC with alkali metal borohydrides.³ This indicates the existence of a common mechanism for the hydrogenation of RT₃ and LaNi₅ in alkaline solutions of MBH₄, which suggests that atomic hydrogen generated in the hydrolysis of MBH₄ on the surface of the IMC particles participates in the hydrogenation of IMC.

Unlike the hydrogenation of RT₃ IMC by gaseous H₂, which requires elevated pressures (0.2-5.0 MPa), 6-8

the interaction of RT_3 with alkaline solutions of MBH_4 occurs at hydrogen pressures <0.1 MPa, which is an additional argument in favor of the assertion that atomic hydrogen is involved in the reactions of hydrogenation of IMC in alkaline solutions of MBH_4 .

This work was financially supported by the Russian Foundation for Basic Research (Project No. 95-03-09615a).

References

- I. I. Korobov, N. G. Mozgina, and L. N. Blinova, Zh. Neorg. Khim., 1995, 40, 17 [Russ. J. Inorg. Chem., 1995, 40 (Engl. Transl.)].
- I. I. Korobov and N. G. Mozgina, Izv. Akad. Nauk, Ser. Khim., 1996, 1632 [Russ. Chem. Bull., 1996, 45, 1542 (Engl. Transl.)].
- I. Korobov and N. G. Mozgina, Zh. Neorg. Khim., 1997,
 42, 247 [Russ. J. Inorg. Chem., 1997, 42 (Engl. Transl.)].
- A. Yu. Prokopchik, Ya. I. Val'syunene, and D. P. Kimtene, Trudy. Akad. Nauk Lit. SSR, Ser. B [Works of the Academy of Sciences of Lithuanian SSR], 1970, 4(63), 27 (in Russian).
- A. Yu. Prokopchik and Ya. I. Val'syunene, Trudy Akad. Nauk Lit. SSR, Ser. B [Works of the Academy of Sciences of Lithuanian SSR], 1971, 1(64), 13 (in Russian).
- V. V. Burnasheva and B. P. Tarasov, Zh. Neorg. Khim., 1982, 27, 1906 [Sov. J. Inorg. Chem., 1982, 27 (Engl. Transl.)].
- P. Tarasov and V. V. Burnasheva, Zh. Neorg. Khim., 1982, 27, 2439 [Sov. J. Inorg. Chem., 1982, 27 (Engl. Transl.)].
- V. V. Burnasheva, B. P. Tarasov, and K. N. Semenenko, Zh. Neorg. Khim., 1982, 27, 3039 [Sov. J. Inorg. Chem., 1982, 27 (Engl. Transl.)].
- M. Banus, R. Bragdon, and A. Hinkley, J. Am. Chem. Soc., 1954, 76, 3848.
- V. I. Mikheeva and S. M. Arkhipov, Zh. Neorg. Khim., 1966, 11, 1506 [Sov. J. Inorg. Chem., 1966, 11 (Engl. Transl.)].
- I. I. Korobov and N. G. Mozgina, Zh. Neorg. Khim., 1992,
 37, 1465 [Russ. J. Inorg. Chem., 1997, 37 (Engl. Transl.)].
- S. S. Batsanov and V. A. Mikhailov, Zh. Strukt. Khim., 1960, 1, 410 [J. Struct. Chem. (USSR), 1960, 1 (Engl. Transl.)]
- K. N. Mochalov, Kh. V. Shifrin, and A. S. Bogonostsev, Kinet. Katal., 1964, 5, 174 [Kinet. Catal., 1964, 5 (Engl. Transl.)].

Received December 25, 1996